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ANALYSIS OF SIMULATED ANNEALING FOR OPTIMIZATION
by

Saul B. Gelfand and Sanjoy K. Mitter

Department of Electrical Engineering and Computer Science
and
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract
Simulated annealing is a popular Monte Carlo algorithm for combinatorial
optimization. The annealing algorithm simulates a nonstationary finite state
Markov chain whose state space (1 1s the domain of the cost function to be
minimized. We analyze this chain focusing on those issues most important for

optimization. In all of our results we consider an arbitrary partition

P ¥

{1,J3} of Q: important special cases are when I is the set of minimum cost
states or a set of all states with sufficiently small cost. We give a lower
- bound on the probability that the chain visits I at some time < k, for k

= 1,2,.... This bound may be useful even when the algorithm does not

278 & ¢ & 4 2 e

converge. We give conditions under which the chain coaverges to I 1in

vrobability and obtain an estimate of the rate of convergence as well. Ve

.,

alsc give conditions under which the chain visits I infinitely often,

LA W

visits I almost always, or does not converge to I, with probability 1.
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1. Introduction

Simulated annealing, as proposed by Eirkpatrick (1], 4is a popular
Monte-Carlo algorithm for combinatorial optimization. Simulated annealing is
a variation on an algorithm introduced by Metropolis [2] for approximate
computation of mean values of various statistical-mechanical quantities for a
physical system in equilibrium at a given temperature. In sinulated
annealing the temperature of the system 1s slowly decreased to zero; if the
temperature 1s decreased slowly enough the system should end up among the
minimum energy states or at least among states of sufficiently low energy.
Hence the annealing algorithm can be viewed as minimizing a cost function
(energy) over a finite set (the system’'s states). Simulated annealing has
been applied to several combinatorial optimization problems including the
traveling salesman problem (2], computer design problems (21,(3), and image
reconstruction problems [4) with apparently good results.

The annealing algorithm consists of simulating a nonstationary
finite-state Markov chain which we shall call the annealing chain. We now
describe the precise relationship between this chain and the finite
optimization problem to be solved. Here and in the sequel we shall take R
to be the real numbers, [ +the natural numbers, and INO =N U (0}, and we
shall denote by |A| the cardinality of a finite set A. Let (Q be a
finite set, say ( = {1,...,]0|}, and U, € R for 1 € Q; we want to
ninimize U, over 1 € Q. Let Ty » 0 for k€ MNg- ( skhall be the
state-space for the annealing chain and we shall refer to {Ui}ieo as the

energy function and {Tk}kemo as the annealing schedule of temperatures.

Let TI(k) - [ﬂgk)lim (a row vector) be a Boltzman distribution over the
energies {Ui}ien at temperature T,, i.e.,
~U,/T
1" "k
Tlik) -c , ienq,
~-U
J
Ye
Jeq
for all k € lNo. The annealing chain will be coanstructed such that at each

/'J.‘k
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time k the chain has ﬂ(k) as its unique invariant distribution, i.e., at

each time k the annealing chain 'shall have a 1l-step transition matrix

(k,k+1) (k,k+1)
P (py 14, 3eq

the vector equation T = TP

such that [ = H(k) is the unique solution of

(£.E+1)  one motivation for this is as follows.

Let S‘ be the minimum energy states in (. Now if '1‘k -0 as k - o then

1 £
—_ if ie 8,
(k) s |
Tli ind
0 1f 1¢5s,
as k - «, i1.e., the invariant distributions converge to a uniform

distribution over the minimum energy states. The hope is then that the chain
itself converges to the minimum energy states.

We now show how Metropolis constructs a transition matrix P(k'k+1)

with invariant vector ﬂ(k) for k € Ny- Let Q =~

[qijli.JeQ be a
symmetric and irreducible stochastic matrix, and let

-(U,-0,)/T
370 g
( 340 ° 1 U, > Ty,
k,k+1)
pij - qi‘1 if UJ < Ui' J# 41,
1 - } p§§'k+1) 12§ =1,
Q#L

for all 1,j e 0 and k € mo. Then it is easily verified that ﬂ(k) -

T(k)P(k.k+l) P(k,k+1)

for all k € MNj. In fact, ana (¥ satisfy the

reversibility condition

ng'k+1)”§k) _ ”gk)Piﬁ'k+1)' 1,3 €0,

for all k € NMNg. Let {xk}kemo be the annealing chain with 1l-step
transition matrices {P(k’k*l)}kErN and some initial distribution,
0

constructed on a suitable probability space (M,A.P). Let pik) - P(x, = 1}
for 1€ (Q and k€ mo.
The annealing chain is simulated as follows. Suppose x, = 1€ Q. Then

generate a random variadble y € with Py = 3} = q-’_‘j for § € Q.




(g mt 2ty aABy aby Ak ) L% UYL L) KT ‘i et el C >

Suppose y = J € (. Then set

3 12 Uy < U,
-(U,-U,)/T
T, 3 12 U, > U, with probability e 3 177k
i else.

Hence we may think of the annealing algorithm as a "probabilistic descent”
algorithm where the Q matrix represents some prior distribution of
"directions", transitions to same or lowver energy states are always allowed,
and transitions to higher energy states are allowed with positive probability
which tends to 0 as k + » (when Ty =0 as k- ).

Even though simulated annealing was proposed as heuristic, its apparent
success 1in dealing with hard combinatorial optimization problems makes it
desirable to understand in a rigorous fashion why it works. The recent works
of Geman (4], Gidas [8], and Mitra et. al. [6] have approached this problem
by showing the existance o0f an annealing schedule for which the annealing
chain converges weakly to the same limit as the seéuence of invariant

distributions {”(k)}kem , 1.e., to a uniform distribution over s'. In each
0

case a (different) constant ¢ 1is given such that 1if Tk 2 ¢/ log k¥ for

large enough k € N and Tk -0 as k ~+ » then
1

A 12 te 8§,
(s |

p(0)

0 12 1¢58°

as k -» ». Furthermore, under an annealing schedule of the form Tk =T/
log(k+k,) where T > o and kg, > 1, Mitra et. al. obtain an upper bound on

2 |p§k)-ﬂ1| for k € Ny. The results of Geman. Gidas, and Mitra et. al.
1eQ
are an extension of weak convergence results for stationary aperiodic

irreducible chains (7] and certain nonstationary chains [8], and are useful
in proving ergodic theorems (which Gidas does). However, if one is simply
interested in finding any ninimum energy state than weak convergence seems

unnecessarily strong. In a recent paper Hajek [9] investigates when the

e R T Ty

y ¥ v v v
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annealing chain converges in probability to S'. Hajek gives an expression
for a constant a’ such that under the annealing schedule Tk = T /.l08 k
for large enough k € N, P{xk € S'} - 1 as k - o iff T > d'.
Furthermore the condition that Q be symmetric is relaxed to what is called
“weak reversibility”.

In this paper, we analyze simulated annealing focusing on optimization
issues. Here we are not so much interested in the statistics of individual
states as in that of certain groups of states, such as the set S‘ of
minimum energy states or more generally a set S of all states with

sufficiently low energy. In all of our results we consider an arbitrary

partition (I.J} of (. and examine the behavior of the annealing chain

relative to this partition; we obtain results for I = § as a special case.
We investigate both finite-time and asymptotic behavior as it depends on the

Q matrix and the annealing schedule of temperatures (Tk}kem .
0

In Section 2 we establish notation. 1In Section 3 we examine finite—time
behavior. Ve observe that since we may keep track of the minimum energy
state visited up to time k, it seems more appropriate to lower bound the
probability of visiting S at some time n < k, rather than the probability
of visiting S at time k. Under an annealing schedule of the form
Ty =T/ log(k+ko) wvhere T > O and kO » 1, we obtain a lower bound on
P{xn € I, some n < k} for k € mo. For large T this bound converges to 1
exponentially fast. For small T <the bound converges to a positive value
0. Hence the bound is potentially useful even for small T when the
algorithm may not converge. In Section 4 we examine asympfotic behavior.
First, we show that under suitable conditions on Q there exists a constant
v such that 1f Tk > U' / log k for large enough k € N, then the
probability that X, € I 1infinitely often is 1. Second, we show that under
suitable conditions on Q if T » v and 'rk = T / log k for large enough
x € I, then X, converges in probability to I. Infact, we show that

P{x, € I} =1 - O(k"T/T) as k -» », where v » O does not depend on T and

e e A e
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cnly depends on Q through the set {(i,J) € Q x Q: Ty 0} of ordered
pairs of allowed transitions. Third, we show that under suitable conditions

on Q there exists a constant U, such that if U' <T U, and T =T/

3
log k¥ for large enough k € N, then the probability that x, € I almost
always is 1. Hence we obtain three results about the convergence of the

annealing algorithm with increasingly stronger assumptions and conclusions.

In Section 4 we also obtain a converse which gives conditions under which the
annealing algorithm does not converge: we show that under suitable conditions

on Q that there exists a constant w' such that 1f ¢ » O and T, <

k
(w'-e) / log k for large enough k € N, then the probability that X ¢ I
infinitely often is <« 1. Finally, we briefly compare our results to Hajek’'s
work and indicate some directions for further research. We remark that

Sections 3 and 4 are essentially independent of each other.
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2. Notation and Preliminaries

In this section we describe notation which is necessary to state our
results, ¢give a few examples of this notation, and discuss & technical

condition which we shall often impose in the sequel.

Let U-minU, and U -maxU,. Then S = (L€ Q: U, -7} and § -
1€0 1€Q

{Le0: U1 < U} for some U < U ¢ . Following standard notation, we shall

P(k.k+d)

define [Pij 1,3€0 to be the d-step transition matrix

starting at time k, i.e.,
p(kok"'d) - p(krk"'l) . p(k"'d'l .k+d~)

In defining the annealing chain {xk}kem in Section 1 we assumed that
0

the stochastic matrix Q was symmetric and irreducible. This assumption is
unnecessarily strong for our purposes. If {I,J} 4is a partition of () and
we want x, to converge to I a8 k - o, then we need only require some
kind of condition which guarantees transitions can be made from J to I,
and possibly another condition which makes transitions from J ¢to I more
likely than transitions from I to J, depending on the mode 3f convergence.
We will be more precise later in Section 4; for now assume Q is an

arbitrary stochastic matrix. For each 1,3} € } we shall say that 1 can

reach J 1f there exists a sequence of states 1 = 10.11.....1k = J such
that q, 4 » 0 for all n =0,...,k-1; 1f UD€ R and U, €U for all
n n+l n

n~0,...,k than we shall say that 1 can reack J at energy U.

Let k€ Ny, and for every d € N and 1,J € 0 let Ai‘;) be the
sequences of states 1 = i,,...,1, = J such that pikik+1) » 0 for all n =

nn+l

0,...,a-1. AE?) are the sequences of allowed transitions of length 4 from

1 to J at positive temperature (we defined T, > O for all k¢ mo). For

every d e N and 1,J € (1 let Mij) be the sequences of states 1 =

10'”"1d = J such that qin1n+1 » 0 for all n = 0,...,d-1. We might

think of Mi?) as the sequences of allowed transitions of length 4 from 1

to J at infinite temperature. Note that Mi?) C Aig). and the elements of

-9 -




A§§) \ Mig) are precisely those sequences which have a self transition, say

from s - 8, with q . = 0 and qg ° 0 for some t € } such that U, >

Us. Now for a4 € N, 1,3 €, apd X € Agﬁ) let
d-1
u(n) - } nax(0, U,
n=0
V(A) = max{(0, U

n+l

w(\) = max{0, U

Also let

1f A§§> 24,

()
UiJ -
@ _,

® if AiJ ,

for all 4 € N, and

U, . = ing 0§ o pipn (9, . (2.1)

1 aeny 4 acgia| 1
for all 4,)} € (. Similarly define vig)'vij and W - by replacing U

by v and ¥, respectively, in the definitions of Ugg),ﬂ above.

Finally, if one or both of the indices 1,jJ € ) are replaced by I,J C (] 1in
these definitions then an additional minimization is to be performed over the
elements of I,dJ, e.g., Ugg) = min Ui?)- wIJ - min W1J etc. Note that
Jed ieI,led ’
(4)

13 by u§§) in the definitions of uig), vig), and wiﬁ),

then the values of these quantities will in general be changed; however the

if we replace A

values of Uij' vij' and "13 will be unchanged. We shall refer to ny
(Ui;)) as the transition energy (d-step traasition emergy) from x to vy,
for x,y€ (U 20.

Example 2.1 In Figure 2.1 we show a state transition diagram for ( =
{1,...,8} where transitions are governed by the Q matrix, i.e., an edge
from 1 € Q to J € N 4is shown 1ff q1J » 0, in which case the edge is
labelled with the value of qu' To optain the state transition diagram for

P(k,k+1)

the corresponding matrix, Kk € mo. simply add a self-transition

loop to every state which can make a transition to a higher energy state (if

-8 -
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one 1s not already present) and relabel the edges appropriately.
p(k.E+1)

self-transitions which are allowed under but not under

depicted by broken loops.

energy of the corresponding state. To illustrate the notatlon we have

(5)
Ms

(8)
Mig® - {(1,1,2,3,4.5)}

- {(1,1,2,3,4,5),(1,2,3,3,4,5),(1,2,3,4,5,5,)}

- g5 _ 0. =
15 = Ui1s” = Up-Uy + Uy -Uz = 4,

Vis = Vig~ = U4 Uy = 3,

(8)
15 = Y157 = 0Ty = 2.

o}

w

The

Q are

Also observe that the ordinate axis gives the

<4

Let {I,J} be a partition of (). In Section 4 we will often impose the

following condition: there exists d € N such that the d-step transition

energy from J to I equals the transition energy from J <to I, for all

5@

Jea ( iz - UJI for all J € J). This will allow us to get lower

bounds

on the quantity P(x €I = J} for all je J. It is easy to show
(k+1)d *xd

that if I = S then this condition is satisfied. Infact, in this case there

exists dj < |g| such that for every d > 4

o Ugg) - U,; for all Je J.

Exzample 2.2 In Figure 2.2 we show a state transition diagram for ( =
{1,...,7} (see Exzample 2.1). Let I =S = {i € Q: g, <2} =-{1,2,3}, g -~
{3,...,7}. Then

0gd) = Uy = USE - Ugp = U - U, - 0, a4z 1.

old) - v -1, d > 2,

osd) - v, -2, 4> 3,

and so d, = 3. Note that 1f we replace A(d) by M(d) in the definition

1 i
of Ugg) for 1,J € (3, then there does not exist d € N such that

UJI for all J e J.

-9 -
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Finite-time Behavior

[ AN
o«

From the point of view of a?plications it is important to understand the

S

finite-time behavior of the annealing algorithm. Certainly it is interesting
; to know whether the annealing algorithm converges according to various
criteria, and this information may well give insight into <finite-time
behavior. However this information may also be misleading for the following
reasons. First, the finite-time behavior of the annealing algorithm may be
. quite satisfactory even when the algorithm does not converge, which may well
be the case for typical applications. Second, the finite-time behavior of
the annealing algorithm may not be clearly related to the convergence rate
when the algorithm does converge, as the following example indicates.
Example 3.1 It is a simple comsequence of Proposition 4.1(ii) that if
Q 1is symmetric and irreduciblse, T » 0, and ‘rk 2 T / log k for large
enough k € N, then there exists a,qg » O such that

P(xk e s} <1 -2 X large enough.

k%
Now let P be the matrix cbtained from

p(E-E+1) by setting Q - [1/]0]]

and T, = O, and let {yk}kemo’ Y € 0., be a stationary Markov chain with

l1-step transition matrix P and some 1initial distribution, constructed on

= a ¢« 3 & 1 a2 X

(M.A,P). Since S‘ is Just the set of persistent states for this chain. it
1° ’ell-known that there exists b > 0 and 0O < p ¢« 1 such that
Plyg € S} 2 1 - po¥, 3

Hence assuming that T is chosen such that P(xk €8) 21 as k -+ o then
the rate that P{xk € S'} - 1 1is at best polynomial while the rate that
P{yk € S.} - 1 1s at worst exponential. Of course we would hope that the
finite-time behavior of the annealing chain would be better than the
stationary chain, for appropriate choice of Q and T. <

We now address the question of what 1is an appropriate criterion to
assess the finite-time behavior of the annealing algorithm. For our

purposes, we are simply interested in finding any state of sufficiently low

| energdy, i.e., an element of §S. Hence it seems reasonable to lower bound

. - 10 -
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P{xk € 8} for k € Ny. However, we observe that by Just doubling the

annealing algorithm's memory requirements we can keep track of cne of the
ninimum energy states visited by the chain up to the current time. In this
case we are really interested in having visited S at some time n < k, as
opposed to actually occupying S at time k. Hence 1t seems mnmore
appropriate to lower bound P{x € S, some n < k} for k¢ Ng-

We start with a proposition which gives a lower bound on the d-step
transition probability plE-%+d)

1
of sequences )\ € Aig), for 1i,jJ € Q1.

in terms of the transition energies U()\)

Proposition 3.1 Let 4e N, T>0, ky> 1, and Ty =T/ log(k+k0)

for k € mo. Then for every 1.J € (
(4
where r(\) > O 1is given in (3.2).

Proof Let

Q- 12 3 # 1,
(k)
Ty -
ng'k+1) 12§ =4,
for all 1,3 € 0 and k€ Ny. Also for every 1i,J € Q and X\ = (10.....1d)
EACY
< AiJ let
A.(\) = max[0, U -u, 1, neo,...,d-1,
n 1n+1 1n
d-1
k+n)
() = 7T =zl » 0, Ke N,
k n=0 1nin+1 0
and
d-1
roo - 17 2% oo (3.2)
n=0 n n+l
Since Ty 1s strictly decreasing, pif’k+1) and hence rig) are
nondecreasing, so that rk(x) > t(\) ¢for all X € No- Hence for every 1.}
£ Q
(k,k+d) _ a-1 (k+n,k+n+1)
Piy (1 £ 3e4(0) 0=0 “tntan
o' "' d 1)

-1 -
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> } . () exp[ - 7 } 4, (0D ]
AEA(d) n=0
iJ
- z r(x)(k+ko+d—1)‘U(*)/T. k€ Ny .
xeAig)

Remarks on Proposition 3.1 (1) 1In Figure 2.1 we have
r((1,2.3,4,5)) = qy,9,5354945 - 15
r((2,5.3.4,5)) = ayp53 Vag,q,g = %[1 - %[‘%7T * ‘§7T]]'
0
r((2.3,4.5.5)) = Quala,d,eps9’ ) - %[ :
(2) PFix k € Ng- From (3.2) 1t 1s easy to see that r()\) is
nondecreasing as T decreases or ko increases, which reflects the fact
that self-transitions in the sequence )\ have larger probability at lower
temperature. On the other hand, (k+ko+d-1)'U(>‘)/T 10 as T 1|l 0 or kq 1
» (i1f U(XN) > 0), which reflects the fact that transitions to higher emergy
states in the sequence )\ have smaller probability at lower temperature.
These two phenomena compete with each other in the lower bound (3.1).
The next theorem gives a lower bound on P(xn € S, some n < k} for k¢
WO by setting I = S.
Theorem 3.1 Let ({I,J} be a partition of (. Also let A &€ N, U =

d .
??§ ng)' T » O, ko > 1, and Ty =T/ 1og(k+ko) for k€ mo. Then

P{x ;€ J, n =0,...,k}
a l-q a 1-q
exp [m/do ] GXP[- m (kd + !10) ] if T » U,
a
< [EE + 0 ] if T = U,
_ 1 a 1 )
exp[ ETE:TT ;g:T] exp[a(a_I) (xd - no)a’l} if 7T o, (3.3)

- 12 -




for all k € mo. where ¢ = U/T, By = ko+d-1. and a » O 1is given in

(3.8).

Note In the statement of Theorem 3.1 and in the proof to follow we

suppress the dependence of the constants U and a on 4. Later, we shall
make this dependence explicit by writing U(d) and a(d).

Proof From Proposition 3.1 for every 1i,J € (

pgg’k+d) > z T\ (kvkgrd-1)T0O/T, ke Ny
XEA(d)
i)
where r(\) > O 1is given in (3.2). Hence
. k-1
- Plx ,€ Jd,. n=0,...,k} < TT max P{x € J | x_, =3}
- nd n=0 jeg (n+1)d nd
N k-1
- =TT |1l ~ min } pgid.(n+1)d)]
n=0 Jed i€T
N k-1 a
- < [1 - —————————], k€ NO, (3.4)
where
a = min r(\) » 0. (3.5)
JEJ 4er XEAgg),
U\ )T
(if U = 1let a be any positive real). Since 1l+x < e* for all x € R,
we have .
£l a < 1 k 1
Bl sl ) el ol o [f iy e
n=0 (nd + ny) nsg (2d + ny) 0 (xd + ny)¢
a 1-g a l-q
ooty %0 0] o[- mimy (kv 2] ar a2,
n, a/d '
[EH‘I“ES) 1f a =1, (3.6)
for all k € mo. Combining (3.4) and (3.8) completes the proof. -

Remarks on Theorem 3.1 (1) Let I = s' = {8}, J =« {1,2,3,4}, and 4

- 4 1in Figure 2.1. Then U = U{2) = 4 and

a = min Tr(\).
Je{l1,2,3,4) XEA(g).
TS24

L3

ﬁa Now it is not hard to see that the minimum is obtained by J = 1 or 2. Using
o

%{

X
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the values of r(\) computed in the first remark following Proposition 3.1

we have
a = Ig mia|l. ¢ - w7y - |-
k k k
0 0 0
(2) Note that
P{x,y € J, ne€ mo} - iif P(x , € J, n= 0,...,k}
=0 if T > U,
a 1
Sexp—mn‘l—_r « 1 if T U,
(o]

so that the bound is potentially useful even when T « U.
(3) Fix k € Ny. It will be convenient to analyze the dependence of

the upper bound (3.3) on T and k4 in the form

k 1

—_— dx (3.7)
0 (xd + no)a

P{xnd €J, n=0,...,k}) g exp[- a I

(see (3.6)). Since t(\) is nondecreasing as T decreases or k
increases, we have from (3.5) that a 4is nondecreasing as T decreases Or
ko increases, which reflects the fact that self-transitions in sequences of

transitions from J to I have larger probability at lower temperature. Oan

k 1

the other hand, J _—
0 (zd + no)a

dx | 0 as T | 0 or kg t= (12 U > 0),

which reflects the fact that transitions to higher energy states in sequences
of transitions from J to I have smaller probability at lower temperature.
Since these two phenomena compete with each other one could consider

ninimizing the r.h.s of (3.7) over T and k., to obtain the best bound.

0

(4) We can generalize Theorem 3.1 by replacing U = max US%) with U
Jeg

>U (1f U <« U <then a = 0 and the upper bound (3.3) 1s useless). Since
a and ¢ are both nondecreasing with increasing U one could consider
minimizing the r.h.s. of (3.7) over U as well as T and ko to obtain
the best bound (see previous remark).

In order to apply Theorem 3.1 we must obtain suttable estimates for the

(@) (@)

constants and a . We are currently investigating this in ¢the

context of a particular problem.

-~ 14 —
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4. Asymptotic Analysis
In the previous section we pointed out some of the difficulties

associated with using the asymptotic behavior of the annealing algorithm to

predict 1its finite-time behavior. Nonetheless, it 1s certainly interesting
from a theoretical viewpoint to perform an asymptotic analysis, i.e, to find
conditions under which the annealing algorithm does or does not converge
according to various criteria, and when the algorithm converges to estinmate
the rate of convergence as well. In this section we address these questions,
and then briefly compare our results to Hajek’'s work and 1indicate some
directions for further research.

We first address the question of what are appropriate criteria to assess
the asymptotic performance of the annealing algorithm. For our purposes, we
are simply interested in finding any state of sufficiently low energy, i.e.,
an element of S. Hence we shall investigate conditions on the Q matrix

and the annealing schedule of temperatures {'1‘1‘}1:6,N under which one or more
0

of the following is true:

(L P{xk € §1i.0.}) =1,

(11) P{xk € S} »1 a8 k = =,

(111) P(x € S a.a.} = 1.

Here "1.0." and "a.a." are abbreviations for "infinitely often" and "almost

always", i.e.,

@®

{ € Si.0.}) = IIm { e sSt=n U { € S}
xk k—mxk n-lku‘lxk

and

@®

{x, ¢ Sa.a.}) = 1lim {x_ € 8} = U N {(x, € S}
x k- *x n=1 k>n *x

Since (ec.f. [(71)

P(x, € S a.a.} < 1im Plx, € 8} < TIm P{x, € S} < P{x, € S 1.0.}, (4.1)

Ko p ZR

it follows that (4),(11), and (i1ii) are increasingly strong results and so we
expect increasingly strong conditions under which each is true. We are also

interested in obtaining the rate of convergence in (il) as well as conditions

- 15 -
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under which (1),(ii), and (iii) do not hold.

We start by giving a proposition which establishes asymptotic upper and
lowver bounds on the d-step transition probability pgg'k+d) a8 k - » in
terms of the transition energy Uij’ for 1.J € Q.

Proposition 4.1 et 4 e N and T » 0. Then there exists a.i_‘1 » 0
for 1,) € (| such that each of the following is true:

(€D) if T, < T / log ¥ for large enough kK € N then

u,,/T
Iz x pgg'k+d) S 8y

k

) &2

for all 1,3 € 0.
(11) if T

v

T / log k for large enough k € N and T - 0O as k -

k
« then
U,,/T
14p g 34 Pgg.xm) 28y,
koo
(@) _
for all 1, € @ such that UiJ UiJ'

(111) 312 T, =T / log k for large enough k € N then

k
a .
Pig'k+d) - ”i 7T as8 k - =,
x +J
(@) _
for all 1,) € @ such that ULJ Uij‘

Proof We prove (1); the proof of (11) 1s similar and (iii) follows

from (1) and (i1). So assume Ty s T/ log k for large enough k € N and

let
qid if ) # %,
w . |
riJ
( Pii'k+1) 12 3 =1,
for all 1, € (] and k€ N. Also, for every 1,J € (] and )\ = (10.....id)
(d)
€ AiJ let
4_.(\) = max{0, U -u, 1, n=-0,...,4-1,
n 1n+1 1n
d-1
(k+n)
r.(\) =TJ] » 0, ke N,
k n=0 in1n+1
and

r(\) = Mm r (W) = sup r, (\) > O.
) 3% keN

- 18 -
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That the limit exists in the definition of r(\) and is equal to the
(k,k+1) (k,k+1)

supremum is a consequence of iim Pyy - sup Pyj (since Ty ~ 0 as
kE - »). Hence for every 1i,j € (
plEX) A\ d-1 (kem, Xenv1)
4 (4) n=0 aln+l
(10""'1d)eAij
d-1
(x+n) 1
) (1 1.)e4(d) 0=0 Latan e:p[ k+d-1 max(0. Uin+1-U1n]
o' 1g eAiJ .
¢ 4,(N\)
- } r . (\) exp| - } R
Tx b
XEAgg) [ n=0 k*3 ]
a-1
< } Te(N) exp[ - lg%.! } 4,(\) ] (k large emnough)
xeAD) =0
13
} e (N
-
XGA(d) k:[x] I
V)
< [ } k(x)] [ E(a) —to7T
e (d) (a)
U(X) U 13 U(x) U4y
a
oy s ke,
x

wvhere

8= ) TO) >0
XEA(d).
U(X)-U(g)
(if U(j) o let 844 be any positive real).

The following theorem gives conditions under which P{xk € S1.0.} =1
by setting I = §.

Theorem 4.1 Let ({I,J} be a partition of (} and assume

(a) there exists d € N such that the d-step transition emergy from

to I equals the transition energy from J to I, for all j e J

(Ugg) - Uy, forall §e ),

(b) every jJ e J can reach some 1€ I (max U

jeg T =)

-17 -
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Also let U = max U cw, Ty 2 v/ log ¥ for large enough k € N, and
jeg T

Tk -0 as X - o». Then P(xk € Idi.o.} =1.

Proof From Proposition 4.1(ii) there exists a > O such that
(k,k+d) a

Py 2 — k large enough,
d U,,/0
k
for all 41,3 € 3 such that Uij) - Uij’ Hence for every large enough k € NN
Plx_, € J, n2 k} < max P{x € J| x4 =3}
nd I:I jed (n+l)d nd
-TT7 [1 - min 2 pgtd,(n+1)d)]
n=k Jed 1E€T
<TT [1 - min ————E————7]
n=k Jeg u,./U
a5 ey
UJi UJi
<TT {1 - min a ]
n=k ! Jeg u,,./U
&5t ey I
U =U
J1 U
< T 1 -2 ]
<Ll =

by (a). Since the infinite product diverges (to zero), P{x , € J. n 2 k} =
0 for all k € N, and the theorem follows. .

Remarks on Theorem 4.1 (1) In Figure 2.1 let I = § = (5}, &

{1,2,3,4}. Then U =U,. = 4.

15
(2) Condition (a) was discussed in Section 2 and is satisfied for I

Our next theorem gives coanditions under which P(xk € S} »1 as k -+ o
by setting I = S, and obtains an estimate of the rate of convergence as
well. We shall need the following lemma, the proof of which can be found in
the Appendix.

Lemma Let & >0, Os<a <1, B >a, kymg€N, and a’k% < 1. Then

0
k l-a
oY) T [1 - ‘—] - 0(e7PE ), as k - o,
2=k, I
where b = a/(l-¢) » O,
- 18 -
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(11) for every mn € N,

k

§ SEi%:Elf [1 - ?E] - o™, , as k - o,

Qe=m+m
m ko 0
where v = B-a » O.
Theorem 4.2 Let ({I,J} be a partition of ( and assunme
(a) there exists d € N such that the d-step transition energy from ]

to I equals the transition energy from J to I, for all J € d

(d)
(UJI - UJI for all J e J),
(b) every J € J can reach some 1 € I (max UJI ¢ ),

Jed
(e) the transition energy from I to J is greater than the

transition energy from j to I. for all J € J (minlU_.,-U,.] > O).
1ed I3 3T

Also let U =max U,. <=, T » U, and T, =T / log k for large emough k
eyt X
€ N. Then P{xk € I} » 1 as k - ». Furthermore, if we assume

(4) there exists 1 € I which can reach some J € J (Upy; « =),
then
Plz, € I} = 1 - o(x7"'D), as k - =,

where v = ?QE[UIJ‘UJI] (0 <« v « » by (e¢) and (4)).

Proof From Proposition 4.1 there exists a, ° 0 such that

a
pj(_?'k".d) S _U_L/'T ' k € IN, (4-2)
g
for all 1.,J € (). Also from Proposition 4.1 there exists a, 0 such that
a
pgg'k+d) > "U_E7T , k large enough, (4.3)
1
k

for all 1,J € 0 such that Ugj) - Uij' In the sequel (4.2) ((4.3)) will be
used to upper (lower) bound the probability of transitioms from I to J (J

to I).

Let Jl.....JrO be a partition of J such that UJI - UJrI for all

« U for all r ¢« s. For example, in Figure 2.1 let I =

s J and U

r’ JrI JSI

s’ - (5}, J = {1,2,3,4}, so that 3, - (4}, J, = (2,3}, and 4 = (1}

- 19 -
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Also let g = U /T, a, = UJ I/T. Br - UIJr/T' Kr - 521 Js. and kr -
[Krl, for r = 1,....r0. Note that aro =g <« 1 and Kro = J. Finally let
p(J.,m,n, 1) = P{xkd € E,, kK = m+l,....n | . Jt,
and
o(L,J.m,n,7) = P{x,4 € K, K =m+l,...,0-1 5 Xy =) | xpq = i},
for 1,3 €Q, mnéeMN, and r = 1,...,T5. Then for every ko € N we can
write
. plk) (k)
Pz € I} = Py77 + P77, (4.4)
where
(kyd)
ng) - } py; o p(3.kg.K.Tp) (4.5)
JES
and
k-1
2 1) 0
m-ko ieI
for all k = kg, kg+l,.... In words, ng) 1s the probability that x 4 € J

for all n = ko....,k, and ng) is the probability that Xy € I £for some

m = ko, .,k-1 and X4 € J for all n = m+l,...,k. We can further write
(k) _ (k) (k)
P Py + P, (4.6)
where
k-
pgk) - E } p(md) E } p(md (m+1)d) (4 mel,k,T) (4.7)
m-k lel =1 jeJ
and
k-2 k Yo
Pik) - 2 } p(md) } 2 } ¢(1,J,m,n,v-1) p(J,n,k, 1), (4.8)
m-k eI n=m+2 r=2 JeJ
T
for all k = kgy,kg+l,.... In words, ng) (ng)) is the probability that
when X makes the transition from I to J at time m it visits at time

nd
m+l (at some time > m+2) the state in J with the largest transition

energy back to I amongst the states in J <that are visited from time 1n =

m+l,...,k.

- 20 -
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UJI)'

terms

and Pik)

transitions from
(k) (k)
P:3 .P4 -0

ko €EMN we have

TYPIEESCCCETS

would have to require U

In order to show that

IJ

The motivation for the decompostion in (4.6) is as follows.

how the chain makes transitions from I
In this case we are forced to work with the
chain makes minimum energy d-step transitions from I

Ury) and maximum energy d-step transitions from

woTk directly with (4.4). Observe that the ng) term only keeps track of

to

"worst case”

to J
g to I
pgk) -0 as k - =
- max U 1’ 0. On the other hand, in the Pék)
jeq J

Suppose we

J but not how it stays in J.
scenario where the
(with energy

(with energy max

it seems clear that we

gt g dug S huh But By |

j€d

of (4.6) we not only keep track of how the chain makes

that we need only require

now proceed with the details.

I to J but also how it stays in J.

We start by upper bounding 1

(k)

p{8) . ysing (4.3),

k-1

p(Jqr kq. K, Tq) <
000N T gk geg
= {1 i § pled.(e+1)d)
- 'ji
e ko Jed i€T
k-1 ay
< TT |1 - min
E=ky ° J&J et (eq) It
d
Uji -Uji
< 1 - min
= - U../T
kg &g S o) J1
d
Uy3 =Uy1
T o[- 2
< 1 - ], Jn€ 3., k = k.,k
0=k, (ea)? 0 0o
T = 1....,r0.
by (a). Combining (4.5) and (4.9) gives for every large enough ky €N
k-1 a
(k) [ 2 ]
P < TT 1 - , kK = k., k.+1,
VT e-kg (2a)¢ 00

- 21 -

+1,.

In order to show that

Ve

(and consequently P70 = 0) as k » o it is not hard to see
min(U.,-U,.] > 0, which is guaranteed by (c).
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for every large enough
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as > 0 and g < 1 we can apply Lemma (i) to (4.10) for every large
enough ko €N to get

l-a
pgk) - o(e-b(kd) )' as k - ©, (4-11)

where b = az/(l—a) > 0.

(k)
Pz

We continue by upper bounding and Pik). First, by almost the

same reasoning that led to (4.9), for every large enough n € N we have
k-1 a

p(J,n,k,7) < ] 1 - 2 = | Je€J, k =n,n+l,...,
¢-n (ea) T
T = 1....,ro. (4.12)
Next, suppose that
Xna ~ 1.
x, € Kr for k - (m+1)d,...,(n-1)d,
Xha .
for some 1., €, m€N, n=-m+2,m+3,..., and T = 1.....r0. Then clearly
there exists k e N (1 < k < min[n~m-1,kr]). intermediate times m « 11
Conlx 1k—1 < n-1, and distinct intermediate states 31""'Jk € Kr such that
xmd - i- X(m+1)d - J-
::_1_2d - JQ' x(12+1)d - jQ+1' for 2 = 1,...,k-1,
X(n~1)d " g+ Fna " J- (4.13)
Let A(i,J.m,n.r;k,il.....1k_1.jl.....jk) be the event defined by (4.13).
Then we have shown that
‘J(iv.’pmrn,r) S 1 } 1 P{A(i'qj'm'n’r;k‘il'""ik_l'dl""'\jk)}
10T k-1
Jpvo-udg &
kr-l kr—l
<k, 2 (p-m-2) max LACICTR I T PE 5D 35 S SR RT PRSI Np )
1.,....14 -1'<1 S
1’ *Tk-1
Jl,...,jk,k

1,J e, n = m+2,m+3, ...

T = 1.....r0.

- 22 -




Now using (4.2) and (4.12) it is not hard to show that for large emough m €
|

PIACL. g mom,Ted,d ety g0 gy, 3y )

&§+1 n-2 1 a.2 ]
< -
(nd) 247~ 2=k (ed) T

and coasequently

d(i.,m,n,v) £ ¢

x_-1
n-2 a
(a-m-2) * 77 [1 -2 ], 1.5€q,

7 a
(md) iJ Q=m+kr (Qd) r
n=-m+2,m+3,..., T = 1,....r0. (4.14)

1

wvhere ¢, 1is an unimportant constant. Combining (4.7),(4.8),(4.12), and

(4.14) gives for every large enough k N

OE
o, )
3 4

P

T
0 k-1 . k-1 az

< e TT |1 -
-2 2 } B [ a ]

21 mek, (pa) © 2°m*1 (ea) T

b

c § 5w 22
+ - -
5 } " [1 ], K = k. Eg+l,.. .,

- a
r=2 mek, (ma) © &Pk, (ea) *

where Ca C; are unimportant constants. Since a8 > 0, a.<a =a <1,

and - - - - - -
(ﬁr ar)T Urg Uy T min [UIJ UJI] > 0, for all «r 1,....r0 ve can
b T JEJr '
~23-
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apply Lemma (ii) to each term in (4.15) for every large enough koe N to get

N —-n

T
0
-3, -e.) -
R } o T T - o™y, as ke,  (4.16)
T=1

where the last equality follows from

vy = min{0T

na IJ—UJI] - min [UIJr- UJrIJ - min . (Bp-a,)T.

r-l....,ro T=1l,..., 0
Finally, combining (4.4),(4.6),(4.11), and (4.16) gives

—b(kd)l_a)

P{xkd € J} = O(e + O(k—7/T). as k - o, (4.17)

Similarly we can show that in (4.17) P{xkd € J} can be replaced by

P{xkd+ko € J}, for all ko -0,..., d-1. Hence
-pk ! /T
P{xk € J} = O(e ) +« 0(k ) as k - o, (a.18)
and the Theorem follows since b,y » 0 (and v <« » 4if (d) is true). -
Remarks on Theorem 4.2 (1) In Figure 2.1 1let I -5 - (s},

Cq

x
- {1,2,3,4}). Then U = Ul5 =4 and v = U51-015

(2) Condition (a) was discussed in Section 2 and is satisfied for I =

- Ul—Us - 1.

(3) Cordition (c) 1is satisfied for I = S and Q symmetric since

min[UIJ-UJI] > min [Ui - min [U,-0U,] » O.
Jjeg i€1, &g 1€1, jed +

(4) When condition (d) 1is not satisfied (v = «), (4.18) shows that

37051

1-g
“bkT Ty, as Xk - o,

P{xk € I} =1 - 0(e
where g = U'/T and b > 0. What we have actually shown is that

_bkl—a
P{xk € I, some n < k} = 1 - OCe ),

as k - o,
and this 1s valid when only (a).(b), T > U'. and Ty 2 T / log k for large
enough k € N are assumed. Theorem 4.1 can be deduced from this by taking
T - T, It is possible to lower bound b 1n terms of the aij’s from
Proposition 4.1, but we shall not do so here.

(5) We can get a somewhat better estimate of the rate of convergence as
follows. ©Let J Dbe the collection of subsets of I such that I0 €1 1ff

the partition {I,.J5} satisfies conditions (a),(b),(c), and (d). Assume

- 24 —




P N
s e e e e s

gy

P )
A 0 4,

D)
L ARl

5

O

that 3 # ¢ and let

v(1,) 7(Ig)
— = Max —_——,
U (I,)  IgEd v (1)

ey, T -7(z,). T T, and T, =T / log k for large emough k

k
€ N. Then
.
P(x, € I} = 1 - ox™ D), as k - o.
The corollary to the next theorem gives conditions under which
P{x, € § a.a.} = 1 by setting I = S.
Theorem 4.3 et {I.J} be a partition of ( and assume that the

transition energy from I to Jd is positive » 0). Also let U, = U >

Uy 17
o, e » 0, and Tk < (U,-¢) / log k for large enough k € N. Then
P{xk €I a.a.} = P{xk € Ii.o.}.

Proof Let T = U,-. Then from Proposition 4.1(i) there exists a » O

such that
k,k+1 a
pj(.d ) _ T_/—T . k € W.
, g A
for all 1,3 € 0. Hence
. (k,k+1)
P(xk € I, X, € J} < max P{xk+1 € J | X, = i} max Py
ieI ieI
Jed
< max 2 —_'—_T L%l%T keN,
x
€I fr
and since U,/T » 1,
} P{xk €I, X,q € d} <« =,
Applying  the “first" Borel-Cantellli  Lemma  (c.f. (v we  have
?{xk € I, X, € J 1.0.} = 0, and the theorem follows. -

Corollary 4.1 Let (I,J} be a partition of (1 and assume that

(a) there exists d € N such that the d-step transition energy from

to I equals the transition energy from J to I, for all J € d
(d)

(UJI UJI for all J e J),

(b) every J € J can reach some L € I (max U

- 25 —
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(e) the transition energy f{rom I to J is greater than the

transition energy from j to I, for all J e J (U - max U,. > 0).
13 7 Yeg JT
Also let U = max U ¢, U, =Up; > 0, v <T«U,, and T =T/ log k
jeg 1

for large enough k € N. Then P{x € I a.a.} = 1.
Proof Combine Theorems 4.1 and 4.3. -

Remarks on Corollary 4.1 (1) 1In Figure 2.1 let I = s* - (5}, g -

{1,2.3,4}. Then U = Ujg =4 and U, = Uy, = 4. Hence, unlike condition

(¢) of Theorem 4.2, condition (e¢) of Corollary 4.1 is not generally
satisfied, even when I = S and Q@ is symmetric.
(2) Note that

U =V - W - min max(0, U,.-U.1.
13 17 I3 7 e, 3ea, 37V
qij)o

The corollary to the next theorem gives conditions under which
P{xk € S1.0.} <1 Dby setting I = S. By (4.1), these are conditions under
which the algorithm does not converge according to any of our c;iteria.
Theorem 4.4 Let (I,J} be a partition of ( and assume

(a) +the transition energy from J to I 1s positive » 0),

(UJI

(b) every 4 € I can reach some j € J (max U
. ieI

Also let ¢ > O and T < (Uyp—¢) / log k for large enough k € N. Then

13 < =)

P(xk € I41i.0.} ¢ 1.

Proof From Proposition 4.1(1) there exists a » O such that
Piﬁ'k+l) < _U3_7T ‘ ke N,

X i

for all 1,j € ). Hence for every large enough k e N

P{x, € J. o 2 k} > Plx, € J} T | min Plx ., €3d |z, =J}

n=k Jeg
-Px_ e 3) TT [1 - max (n,n+1)
k - [ J€d 12iji ]
> Pi{x,_ € J} T:T 1 - max a
k n=k [ Jed 121 nuji;r
> P(x, € J} - 1 - -2 1 .
R
- 26 —
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Since U../T > 1 the infinite product converges (to a positive value), and

JI
by (b) P(xk € J} » 0 for infinitely many k € N. Hence P(xn € J, n> k} »

"o ot &

0 for some large enough k € N, and the theorem follows. -

Corollary 4.2 Let ({I,J} be a partition of ( and assume that

WYaf Tal¥, %"

(a) the transition energy from some J e & ¢o I is positive
(max U, > 0).

4 Jeg 31

y =

- Also let W = mex W, > O, 35 = {ye g W
jed

x® x ]
jI - v}, T =0 \NJ, and

assume that

(b) the transition energy from 3° to I is positive (UJ' > 0).

3
I
Finally let ¢ > O and T, < (W ) / log k for large emough Xk € N. Then
P(xk € I i.0.} < 1.

PR

Proof Observe that W = UJ'I' and apply Theorem 4.4 to the partition
z
{(r.,3.

In Figure 2.1 let I = § = {5}, J = {1,2.3,4}. Then W = W,. = W.. = LA

18 25

2T

2 and J = {1,2,3).

¥e next state a theorem of Hajek’'s which gives necessary and sufficient
ccnditions for P(x, € S1 21 as k = w.

Theorem (Hajek) Assume that

(a) 41 can be reached from J, for all i,jJ € 0 (Q 4is irreducible),

.'-‘.I-|-','l‘

(b) 1if 1+ ~can be reached from § at emergy U then J can be

reached from 1 at energy U, for all 1,J € and U € R (U1+wiJ -
U, +¥W,.,
R
Let 4 = max VJS' « », T > 0, and Ty =T / log k for large enough k €
]
- Jes
] ]
. Then P{xk €S} -»1 as koo 1iff T >4 .

for all 1, € Q).

LI S .‘ -' l'

Proof See [(9].

Remarks on Hajek’'s Theorem (1) In Figure 2.1 we have a’ - Vis = 3.
. (2) In Hajek’s paper conditions (a) and (b) are called “"strong

Tl T I SR

irreducibility” and "weak reversibility", respectively. Condition (b) 1is

- satisfied for Q symmetric.

x x

(3) Obviously W <4d < U and the equalities hold only in fairly
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trivial cases. Hence under conditions (a) and (b), Hajek’'s Theorem is
stronger than our Theorem 4.2 and Cocrollary 4.2 with I = s®. However, the
conditions under which our results are obtained are different, and in general
weaker than Hajek’'s, with the exception that condition (c) of Theorem 4.2 can
be true when condition (b) of Hajek's Theorem is false and conversely. Also
we obtain an estimate of the rate for which P{x.€ §)+1 as k » o.

We close this section by indicating how we can analyze various
modifications of the annealing algorithm by our methods. Such modifications
might include

(L) allowing the Q matrix to depend on time,

(11) measuring the energy differences UJ—U1 with random error,

(141) allowing the temperature Tk to depend on the current state X, -
The important polnt to observe in modifications such as these is that our

results depend only on the Markov property of the annealing chain {xk}kem
0

and the asymptotic behavior of its d-step transition matrix (P(k’k+d)}kem
' ¢]
as k - o for fixed d € IN. In particular, our results are based on
satisfying one or both of the inequalities
u,.,/T
1im k pgk'l“d) , 0 (4.19)
Koo J :
and
U, .,/T
IIm k i pg?'k."d) « ® (4.20)
Koo

for appropriate 1,]) € (). Hence our results are valid for any Markov chain
which satisfies (4.19) and/or (4.20) for appropriate 4i,J € 1. Ofcourse in
general the Uij's are not given by (2.1), and can infact be any
non-negative real numbers (or =), with the exception that in Theorem 4.2 we
require Uij < 012+UQJ for certain 1,J,2 € (}. We are currently examining
the modifications of the annealing algorithm mentioned above and are also

attempting to extend our results to more general (countably infinite and

uncountable) states spaces.




$. Conclusion

We have analyzed the simulated annealing algorithm focusing on those

: issues most important for optimization. Here we are interested in finding
3 good but not necessarily optimal solutiomns. We distinguished between the
K finite time and asymptotic behavior of the annealing algorithm. In our
. finite-time analysis we gave a lower bound on the probability that the
: annealing chain visits a set of low energy states at some time < k, for k =
N 1,2,.... This bound may be useful even when the algorithm does not converge
1 and as such is probably our most important result for applications. We are
N currently engaged in trying to apply this bound to a specific problem. In
,; our asymptotic analysis we obtained conditions under which the annealing
:; algorithm converges to a set of lov energy states according to various

criteria. Hajek has recently given necessary and sufficient conditions that
.S the annealing chain converge in probability to the minimum energy states. We
i gave an estimate of the rate of convergence. Our methods apply to various

modifications of the annealing algorithm. We hope to explore some of these
a modifications and to extend our results to more general state spaces.
i
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6. Appendix
Proof of lemma (1) Without loss of generality we assunme ko = 1. Then

using the imequality 1l+x < e* for all x€ R we have

k-1
k k l-q
a8 1 1 b_-bk
TT i1 - __] < ex [- a _-] < exp[— a J — dx| =~ e’e '
g=1 [ Qe P Z e? 1 2?
xeN. (A.1)

Proof of Lemma (31) Without loss of generality we assume ko - my = 1.
Then using (A.1) and the inequality (x+1)Y < © + y for all x>1 and O

<y <1 we have

k l1-a l-q _pel—a l-a
T [1 _ EE < oP(m+1)” = -bk < o% bk™ " bm” T
¢=m+1 e
K=m+l,m+2,..., m€ N.
Let
n l-a
£ (x,0) = ) (B PRTT g3k, KeN e N
mn=1
Then we can write
k
n k _ne i
} (k+1-m) T [1 - EE] < e% bk £,(k.X), k€N 1neN,.
m Q=m+1 e ’

m=1

We shall show that for every n € mo there exists an.bn € R such that

l-qg
(x+1-0)% _be n -

fn(k.Q) < a, ———E;——— e + b k", (] l1,...,k, keN,

(A.2)
and consequently
k
n k
} (k""l-m) "——r [1 - a_] - o(k"f)' a8 k - o,
o1 Qe=m+1 o1

as required. -
Proof of (A.2) 1s by 4induction on n € mo. First consider n - 0. Let
g(x) = ebx/xB. x> 1. Since g (x) > O for large emough x, it follows

that
R 1-q
b
£5(k,2) = } 9;;——— < IQg(x)dx + g(1) + g(m)
m=1 1

N
o,

N

N
S
N -
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-

2 pxl™@ be 172
- J e dx + gb + .e_r
1 ;B 2
l-q l-q
R bx be
1 I e b, e
- dx + e~ + , ¢ =1,...,k, k€N,
T-ad J, 2 QB
where § = (B-a)/(l-g) = v/(1-a) » O. Let |§] Dbe the largest integer < §.
Then expanding ebx in a Taylor series and integrating term by term we have
l-a ® l-q
e 1.4 be
1 1 b7x b e
fo(k.Q) < r‘_—a' J —5" 2 —1-‘— dx + 8 + —T—
R () ¢
@ 1l-g 1l-q
1 } bixi X'Q . eb . ebQ
B TT-DTE57 | Y
ax 1=15]+1 x=1 )
@ 1l-a
1 5] +1 pteel ™t | b, ™
a(e1 9y’ M P
1={5]+1
< a ebgl-a +b @ =1 kK, ke
- o QT ol LA ] » (A1
b

where ag = 1 + (1/a)((|5]+1)/(|§]+1-6)] and Db, = e .
Next assume (A.2) is valid for n € No and consider n+l. Summing by

parts (c.f. [10]}) we have

-1 )
£3,1(6.2) = (ke1-0D€.(X,Q) + ) £,(k,m)
m=1
1 l-g
(x+1-0)%"* mo n+l
< ay ————E;———— e + 2bk + a £ (k.Q)
1 l-a
(k+1-¢)%* b n+l -
< m.]'-—Q:r——e +bn+1k . e l1,...,k, kX e N,
if ve set a  , = an(an+1) and Db, ., = bn(an+2). By induction (A.2) is
valid for all n € mo. -
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